Toward attogram mass measurements in solution with suspended nanochannel resonators.

نویسندگان

  • Jungchul Lee
  • Wenjiang Shen
  • Kris Payer
  • Thomas P Burg
  • Scott R Manalis
چکیده

Using suspended nanochannel resonators (SNRs), we demonstrate measurements of mass in solution with a resolution of 27 ag in a 1 kHz bandwidth, which represents a 100-fold improvement over existing suspended microchannel resonators and, to our knowledge, is the most precise mass measurement in liquid today. The SNR consists of a cantilever that is 50 microm long, 10 microm wide, and 1.3 microm thick, with an embedded nanochannel that is 2 microm wide and 700 nm tall. The SNR has a resonance frequency near 630 kHz and exhibits a quality factor of approximately 8000 when dry and when filled with water. In addition, we introduce a new method that uses centrifugal force caused by vibration of the cantilever to trap particles at the free end. This approach eliminates the intrinsic position dependent error of the SNR and also improves the mass resolution by increasing the averaging time for each particle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighing nanoparticles in solution at the attogram scale.

Physical characterization of nanoparticles is required for a wide range of applications. Nanomechanical resonators can quantify the mass of individual particles with detection limits down to a single atom in vacuum. However, applications are limited because performance is severely degraded in solution. Suspended micro- and nanochannel resonators have opened up the possibility of achieving vacuu...

متن کامل

Fabrication of a nanomechanical mass sensor containing a nanofluidic channel.

Nanomechanical resonators operating in vacuum are capable of detecting and weighing single biomolecules, but their application to the life sciences has been limited by viscous forces that impede their motion in liquid environments. A promising approach to avoid this problem, encapsulating the fluid within a mechanical resonator surrounded by vacuum, has not yet been tried with resonant sensors ...

متن کامل

High-speed multiple-mode mass-sensing resolves dynamic nanoscale mass distributions

Simultaneously measuring multiple eigenmode frequencies of nanomechanical resonators can determine the position and mass of surface-adsorbed proteins, and could ultimately reveal the mass tomography of nanoscale analytes. However, existing measurement techniques are slow (<1 Hz bandwidth), limiting throughput and preventing use with resonators generating fast transient signals. Here we develop ...

متن کامل

Fabrication and Measurement of a Suspended Nanochannel Microbridge Resonator Monolithically Integrated with CMOS Readout Circuitry

We present the fabrication and characterization of a suspended microbridge resonator with an embedded nanochannel. The suspended microbridge resonator is electrostatically actuated, capacitively sensed, and monolithically integrated with complementary metal-oxide-semiconductor (CMOS) readout circuitry. The device is fabricated using the back end of line (BEOL) layers of the AMS 0.35 μm commerci...

متن کامل

Attogram mass sensing based on silicon microbeam resonators

Using doubly-clamped silicon (Si) microbeam resonators, we demonstrate sub-attogram per Hertz (ag/Hz) mass sensitivity, which is extremely high sensitivity achieved by micro-scale MEMS mass sensors. We also characterize unusual buckling phenomena of the resonators. The thin-film based resonator is composed of a Si microbeam surrounded by silicon nitride (SiN) anchors, which significantly improv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 10 7  شماره 

صفحات  -

تاریخ انتشار 2010